Preparation and Crystal Structure of $\mathbf{K}_{\mathbf{2}} \mathbf{S b P O}_{\mathbf{6}}$

A. LACHGAR, S. DENIARD-COURANT, and Y. PIFFARD*
Laboratoire de Chimie des Solides, U.A. 279, 2, rue de la Houssinière, F. 44072 Nantes Cédex, France

Received November 5, 1985

Abstract

The single phase compound $\mathrm{K}_{2} \mathrm{SbPO}_{6}$ was prepared by a solid-state reaction. It crystallizes in the orthorhombic system, space group Pnma with $a=9.429(4) \AA, b=5.891(3) \AA, c=11.030(5) \AA, Z=4$. The structure was determined from 561 reflexions collected on a Nonius CAD4 automatic diffractometer with $\mathrm{MoK} \bar{\alpha}$ radiation. The final R index and weighted R_{w} index are 0.038 and 0.044 , respectively. The structure is built up from rutile-like strings of edge shared SbO_{6} octahedra to which phosphate groups are linked by two of their vertices. These chains, running parallel to the b-axis, are separated from each other by potassium atoms. © 1986 Academic Press, Inc.

Introduction

Within a research program devoted to compounds likely to exhibit fast alkali-ion mobility, our structural studies of phases occurring in the $\mathrm{K}_{2} \mathrm{O}-\mathrm{Sb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ system have found some promising materials:
$-\mathrm{K}_{3} \mathrm{Sb}_{3} \mathrm{P}_{2} \mathrm{O}_{14}(1)$ and $\mathrm{KSbP}_{2} \mathrm{O}_{8}$ (2) in which potassium atoms are situated between covalent layers.
$-\mathrm{KSb}_{2} \mathrm{PO}_{8}(3)$ and $\mathrm{K}_{5} \mathrm{Sb}_{5} \mathrm{P}_{2} \mathrm{O}_{20}(4,5)$ which have three-dimensional frameworks delimiting large channels wherein potassium atoms are situated.
This paper reports the preparation and crystal structure determination of a new compound isolated in the course of our investigations in the $\mathrm{K}_{2} \mathrm{O}-\mathrm{Sb}_{2} \mathrm{O}_{5}-\mathrm{P}_{2} \mathrm{O}_{5}$ system: $\mathrm{K}_{2} \mathrm{SbPO}_{6}$.

Experimental

The starting materials for synthesizing K_{2} SbPO_{6} were $\mathrm{K}_{2} \mathrm{HPO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (GR Grade,

[^0]Merck) and $\mathrm{Sb}_{2} \mathrm{O}_{5} \cdot n \mathrm{H}_{2} \mathrm{O}$ which was prepared and analyzed as has been described previously (6). The chemicals were weighed out in the stoichiometric ratio and the mixture was heated, in a platinum crucible, at 1173 K for 12 hr . The crystals obtained are colorless thin needles elongated along the [010] direction. Single crystal Xray study indicates that the compound is of orthorhombic symmetry. The cell parameters (Table I) were least-squares refined

TABLE I
Unit Cell Constants

Crystal symmetry	Orthorhombic
$a(\AA)$	$9.429(4)$
$b(\AA)$	$5.891(3)$
$c(\AA)$	$11.030(5)$
$V\left(\AA^{3}\right)$	612.72
$d_{\text {calc }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	3.53
$d_{\text {obs }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	3.50 ± 0.05
Z	4
Space group	Pnma
$\mu\left(\mathrm{cm}^{-1}\right)$ for	61.0
$\lambda K \bar{\alpha}=0.71069 \AA$	

from a Guinier powder spectrum (GuinierNonius FR 552, quartz crystal monochromator, $\lambda \mathrm{CuK} \alpha_{1}=1.54056 \AA, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ as standard) (Table II). The powder pattern includes observed and calculated interplanar distances of the reflexion planes along with the intensities calculated from the LazyPulverix program (7). The density of $\mathrm{K}_{2} \mathrm{Sb}$ PO_{6} was determined experimentally by its apparent loss of weight in carbon tetrachloride. It was found to be $3.50 \mathrm{~g} \mathrm{~cm}^{-3}$ in fair agreement with the calculated value of $3.53 \mathrm{~g} \mathrm{~cm}^{-3}$ for four formula units in the unit

TABLE II
$\mathrm{K}_{2} \mathrm{SbPO}_{6}$ X-Ray Powder Diffraction Data

hkl	$d_{\text {obs }}$ (A)	$d_{\text {calc }}$ (\AA)	I / I_{0}	hkl	$\begin{aligned} & d_{\mathrm{obs}} \\ & (\AA \dot{\AA}) \end{aligned}$	$d_{\text {calc }}$ (A)	$\underline{/ I}{ }_{0}$
101	7.178	7.167	100.0	402	2.167	2.168	13.6
002	5.511	5.515	59.0	105	2.148	2.148	2.4
011		5.197	0.0	411	2.148	2.147	0.3
102		4.760	0.0	321		2.110	0.7
200	4.719	4.715	11.3	304		2.073	0.3
111	4.551	4.551	4.5	2231		2.066	0.9
201		4.335	0.0	015	2.066	2.066	1.0
112		3.703	0.6	412		2.034	1.0
210		3.681	1.2	115		2.018	0.1
202	3.581	3.584	16.7	024	2.013	2.013	11.4
211		3,492	0.6	322		2.003	1.2
103	3.424	3.425	36.4	205		1.998	0.3
013		3.119	0.4	403		1.984	0.3
212	3.062	3.062	10.4	124		1.969	0.0
301	3.021	3.023	39.4	314		1.955	0.4
113	2.962	2.961	16.4	031		1.933	0.0
020		2.946	0.6	131		1.894	0.0
203		2.899	0.6	215		1.892	0.0
004	2.755	2.757	5.1	413		1.881	0.0
302	2724	2.731	0.8	5013	1858	1.859	6.0
1211	2.724	2.725	42.0	323		1.856	15.6
311		2.689	1.6	224	1.850	1.851	13.8
104		2.647	1.3	$420\}$	1840	1.841	7.4
$213\}$	2597	2.610	0.9	006	1.840	1.838	5.9
022	2.597	2.598	18.9	1321	1815	1.815	0.0
122		2.505	0.7	421	1.815	1.815	1.8
220	2.499	2.498	7.8	230		1.813	0.0
312		2.478	0.7	$305\}$	806	1.806	6.3
221		2.436	0.0	106		1.804	0.0
114		2.414	0.4	404		1.792	5.2
303		2.389	0.9	231	1.792	1.789	0.0
204		2.380	1.3	502		1.784	0.0
400	2.358	2.357	3.4	511		1.773	0.0
401	2.305	2.305	2.8	422	1.746	1.746	4.8
222	2.276	2.276	9.7	125	1.736	1.736	14.2
123	2.232	2.233	11.5	033		1.732	0.2
313		2.214	0.2	315		1.726	0.3
214		2.207	0.2	116		1.725	0.3
410		2.189	0.2	232	1.714	1.714	2.2

Fig. 1. [001] view of two $\left(\mathrm{SbPO}_{6}^{2-}\right)_{n}$ chains corresponding to antimony atoms lying at $z=0$.
cell. Intensity data were collected from a needle-shaped crystal ($0.02 \times 0.01 \times 0.12$ mm^{3}) rotating along the [010] axis, on a Nonius CAD4 diffractometer using the conditions for data collection given in Table III. For the data reduction, structure solution and refinement, the SDP-PLUS program chain (1982 version) of Enraf-Nonius, written by Frenz, was used (8).

Refinement of the Structure

Refinement was carried out by the fullmatrix least-squares method. The posi-

Fig. 2. [010] view of $\mathrm{K}_{2} \mathrm{SbPO}_{6}$. The tetrahedra with dark and light outlines correspond to phosphorus atoms lying at levels $y=\frac{3}{4}$ and $y=\frac{1}{4}$, respectively. For the same y levels potassium atoms are represented by black and white circles, respectively.

TABLE III
Data Collection and Refinement Conditions
Data collection

Equipment
Radiation (\AA)
Scan mode
Scan angle (${ }^{\circ}$)
Recording angular range (θ°)
Number of independent data

Nonius CAD4 diffractometer
$\lambda \mathrm{MoK} \bar{\alpha} \quad \lambda=0.71069$
$\omega-2 \theta$
$\Delta \omega=1.0+0.35 \tan \theta$
1.5-35.0

561
observed with $\sigma(I) / I<0.33$
(used in refinements)
No absorption correction
Refinements
Number of variables 28 (isotropic temperature factors)
$R=\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right| \quad 0.063$
$R_{w}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma F_{0}^{2}\right]^{1 / 2} \quad 0.069$ with $w=1$
Number of variables 59
(anisotropic temperature factors)
$R=0.038$
$R_{w}=\quad 0.044$
with $w=1 /\left(1+\left[\left(F_{\text {obs }}-F_{\mathrm{av}}\right) / F_{\text {max }}\right]^{2}\right)$
Extinction parameter refined $g=\quad 0.26(3) \times 10^{-6}$

TABLE IV
Fractional Atomic Coordinates and Thermal Parameters

Note. Expression for anisotropic temperature factors: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\right.\right.$ $\left.\left.\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$.
${ }^{\mathbf{a}} \boldsymbol{B}_{\mathrm{eq}}={ }_{3}^{4} \Sigma_{i} \Sigma_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \mathbf{a}_{j}$.
tional parameters for the antimony atoms were determined from the three-dimensional Patterson map. In the first stage of refinement, the isotropic temperature factor of the unique Sb atom was refined. With use of these data, a Fourier difference map was computed which revealed the positions of the potassium, phosphorus, and oxygen atoms. In the subsequent stage of refinement the positional parameters and isotropic temperature factors of the nine unique atoms were refined to $R=0.063$ and $\boldsymbol{R}_{w}=0.069$. Then anisotropic temperature factors were assigned to all atoms. The final stage of refinement with corrections for secondary extinction and anomalous dispersion converged to final $R=0.038$ and R_{w} $=0.044$. Details of the different stages of refinement are given in Table III. Table IV presents the final atomic coordinates and
thermal parameters (structure factor table will be sent upon request).

Description and Discussion of the Structure

In the structure of $\mathrm{K}_{2} \mathrm{SbPO}_{6}$ the SbO_{6} octahedra and PO_{4} tetrahedra are arranged in infinite chains running parallel to the b-axis. The SbO_{6} octahedra are linked together by sharing edges thus forming a somewhat staggered string (Fig. 1). In this rutile-like string, each outwardly pointing vertex $\mathrm{O}(5)$, as yet unshared, of every SbO_{6} octahedron joins with one PO_{4} tetrahedron, so that each tetrahedron links two octahedra and has two unshared vertices. The $\left(\mathrm{SbPO}_{6}^{2-}\right)_{n}$ chains are separated from each other by the potassium atoms (Fig. 2).

A list of bond distances and bond angles

TABLE V
Bond Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for the Coordination Polyhedra

	$\mathrm{Sb}-\mathrm{O}(1)(\times 2)$	1.995(8)	$\mathrm{O}(1)-\mathrm{Sb}-\mathrm{O}(1)$	180.0(7)	
	$\mathrm{Sb}-\mathrm{O}(2)(\times 2)$	1.958(8)	$\mathrm{O}(1)-\mathrm{Sb}-\mathrm{O}(2)(\times 2)$) 82.8(3)	
	$\mathrm{Sb}-\mathrm{O}(5)(\times 2)$	2.023(6)	$\mathrm{O}(1)-\mathrm{Sb}-\mathrm{O}(2)(\times 2)$	97.2(3)	
			$\mathrm{O}(1)-\mathrm{Sb} \quad \mathrm{O}(5)(\times 2)$	91.4(5)	
			$\mathrm{O}(1)-\mathrm{Sb}-\mathrm{O}(5)(\times 2)$) 88.6(5)	
			$\mathrm{O}(2)-\mathrm{Sb}-\mathrm{O}(2)$	180.(9)	
			$\mathrm{O}(2)-\mathrm{Sb}-\mathrm{O}(5)(\times 2)$) 89.5(5)	
			$\mathrm{O}(2)-\mathrm{Sb}-\mathrm{O}(5)(\times 2)$) 90.5(5)	
			$\mathrm{O}(5)-\mathrm{Sb}-\mathrm{O}(5)$	180.0(5)	
	$\mathrm{P}-\mathrm{O}(3)$	1.50 (1)	$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$	118.2(8)	
	$\mathrm{P}-\mathrm{O}(4)$	1.50 (1)	$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(5)(\times 2)$	106.4(5)	
	$\mathrm{P}-\mathrm{O}(5)(\times 2)$	1.579(7)	$\mathrm{O}(4)-\mathrm{P}-\mathrm{O}(5)(\times 2)$	110.1(5)	
			$\mathrm{O}(5)-\mathrm{P}-\mathrm{O}(5)$	104.6(5)	
$\mathrm{K}(1)-\mathrm{O}(1)$	2.90 (1)	$\mathrm{K}(1)-\mathrm{O}(1)$	2.84 (1) K(1)	(1)-O(2)($\times 2$)	3.969(9)
$\mathrm{K}(1)-\mathrm{O}(3)$	2.65 (1)	$\mathrm{K}(1)-\mathrm{O}(3)$	3.53 (1) K($(1)-O(4)(\times 2)$	3.003(2)
$\mathrm{K}(1)-\mathrm{O}(5)(\times 2)$	(2) 3.171(8)	$\mathrm{K}(1)-\mathrm{O}(5)(\times 2)$	3.343(9)		
$\mathrm{K}(2)-\mathrm{O}(1)(\times 2)$	(2) 3.914(8)	$\mathrm{K}(2)-\mathrm{O}(2)$	3.63 (1) K(2)	(2)-O(2)	2.70 (1)
$\mathrm{K}(2)-\mathrm{O}(3)$	3.15 (1)	$\mathrm{K}(2)-\mathrm{O}(3)(\times 2)$	3.136(5) K((2) - $\mathrm{O}(4)$	2.73 (1)
$\mathrm{K}(2)-\mathrm{O}(4)$	2.94 (1)	$\mathrm{K}(2)-\mathrm{O}(5)(\times 2)$	2.764(8)		
$\mathrm{O}(1)-\mathrm{O}(2)(\times 2)$	2) 2.61 (1)	$\mathrm{O}(1)-\mathrm{O}(2)(\times 2)$	2.97 (1) O(1)	(1)-O(5)($\times 2$)	2.88 (1)
$\mathrm{O}(1)-\mathrm{O}(5)(\times 2)$	2) 2.81 (1)	$\mathrm{O}(2)-\mathrm{O}(5)(\times 2)$	2.80 (1) O(2)	O (2)-O(5)($\times 2$)	2.83 (1)
$\mathrm{O}(3)-\mathrm{O}(4)$	2.58 (2)	$\mathrm{O}(3)-\mathrm{O}(5)(\times 2)$	2.47 (1) $\mathrm{O}(4$	$(4)-O(5)(\times 2)$	2.53 (1)
$\mathrm{O}(5)-\mathrm{O}(5)$	2.50 (1)				

along with their standard deviations is given for $\mathrm{K}_{2} \mathrm{SbPO}_{6}$ in Table V. It can be seen from this table that all distances are reasonable and in good agreement with previous knowledge of phosphate, potassium, and antimony (V) structural chemistry. The SbO_{6} octahedron is slightly distorted with three pairs of $\mathrm{Sb}-\mathrm{O}$ distances: 1.958(8), $1.995(8)$, and $2.023(6) \AA$. The length of the shared edge, $\mathrm{O}(1)-\mathrm{O}(2)$, is $2.61(1) \AA$. This distance is significantly shorter than the other $\mathrm{O}-\mathrm{O}$ distances within the octahedron which are ranging from $2.80(1)$ to 2.97 (1) \AA. In the case of the phosphate group, the two unshared oxygen atoms, i.e., not bonded to antimony, form two $\mathrm{P}-\mathrm{O}$ bonds (1.50(1) Å) significantly shorter than the two others ($1.579(7) \AA$). These values are very close to
those which have been found in $\mathrm{K}_{3} \mathrm{Sb}_{3} \mathrm{P}_{2} \mathrm{O}_{14}$ (1) and $\mathrm{KSbP}_{2} \mathrm{O}_{8}$ (2).

References

1. Y. Piffard, A. Lachgar, and M. Tournoux, J. Solid State Chem. 58, 253 (1985).
2. Y. Piffard, S. Oyetola, S. Courant, and A. Lachgar, J. Solid State Chem. 60, 209 (1985).
3. Y. Piffard, A. Lachgar, and M. Tournoux, Mater. Res. Bull. 20, 715 (1985).
4. Y. Piffard, A. Lachgar, and M. Tournoux, Rev. Chim. Minér. 22, 101 (1985).
5. Y. Piffard, A. Lachgar, and M. Tournoux, Mater. Res. Bull., to be published.
6. Y. Piffard, S. Oyetola, A. Verbaere, and M. Tournoux, J. Solid State Chem. 62, 81 (1986).
7. R. Yvon, W. Jeitschio, and E. Parthe, J. Appl. Crystallogr. 10, 73 (1977).
8. B. Frenz, Enraf-Nonius Structure Determination Package, Delft Univ. Press (1982).

[^0]: * To whom all correspondence should be addressed.

